Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
EFSA J ; 22(4): e8714, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681741

RESUMEN

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

2.
EFSA J ; 22(3): e8655, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510324

RESUMEN

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

3.
EFSA J ; 22(1): e8496, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264299

RESUMEN

The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and ß-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.

4.
EFSA J ; 22(1): e8490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38235311

RESUMEN

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

5.
EFSA J ; 22(1): e8483, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239495

RESUMEN

Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

6.
EFSA J ; 22(1): e8488, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239496

RESUMEN

The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 µg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.

7.
EFSA J ; 21(11): e08375, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37942224

RESUMEN

In 2004, the EFSA Panel on Contaminants in the Food Chain (CONTAM) adopted a Scientific Opinion on the risks to animal health and transfer from feed to food of animal origin related to the presence of ochratoxin A (OTA) in feed. The European Commission requested EFSA to assess newly available scientific information and to update the 2004 Scientific Opinion. OTA is produced by several fungi of the genera Aspergillus and Penicillium. In most animal species it is rapidly and extensively absorbed in the gastro-intestinal tract, binds strongly to plasma albumins and is mainly detoxified to ochratoxin alpha (OTalpha) by ruminal microbiota. In pigs, OTA has been found mainly in liver and kidney. Transfer of OTA from feed to milk in ruminants and donkeys as well as to eggs from poultry is confirmed but low. Overall, OTA impairs function and structure of kidneys and liver, causes immunosuppression and affects the zootechnical performance (e.g. body weight gain, feed/gain ratio, etc.), with monogastric species being more susceptible than ruminants because of limited detoxification to OTalpha. The CONTAM Panel considered as reference point (RP) for adverse animal health effects: for pigs and rabbits 0.01 mg OTA/kg feed, for chickens for fattening and hens 0.03 mg OTA/kg feed. A total of 9,184 analytical results on OTA in feed, expressed in dry matter, were available. Dietary exposure was assessed using different scenarios based on either model diets or compound feed (complete feed or complementary feed plus forage). Risk characterisation was made for the animals for which an RP could be identified. The CONTAM Panel considers that the risk related to OTA in feed for adverse health effects for pigs, chickens for fattening, hens and rabbits is low.

8.
EFSA J ; 21(9): e08215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37711880

RESUMEN

Mineral oil hydrocarbons (MOH) are composed of saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH). Due to the complexity of the MOH composition, their complete chemical characterisation is not possible. MOSH accumulation is observed in various tissues, with species-specific differences. Formation of liver epithelioid lipogranulomas and inflammation, as well as increased liver and spleen weights, are observed in Fischer 344 (F344) rats, but not in Sprague-Dawley (SD) rats. These effects are related to specific accumulation of wax components in the liver of F344 rats, which is not observed in SD rats or humans. The CONTAM Panel concluded that F344 rats are not an appropriate model for effects of MOSH with wax components. A NOAEL of 236 mg/kg body weight (bw) per day, corresponding to the highest tested dose in F344 rats of a white mineral oil product virtually free of wax components, was selected as relevant reference point (RP). The highest dietary exposure to MOSH was estimated for the young population, with lower bound-upper bound (LB-UB) means and 95th percentiles of 0.085-0.126 and 0.157-0.212 mg/kg bw per day, respectively. Considering a margin of exposure approach, the Panel concluded that the present dietary exposure to MOSH does not raise concern for human health for all age classes. Genotoxicity and carcinogenicity are associated with MOAH with three or more aromatic rings. For this subfraction, a surrogate RP of 0.49 mg/kg bw per day, calculated from data on eight polycyclic aromatic hydrocarbons, was considered. The highest dietary exposure to MOAH was also in the young population, with LB-UB mean and 95th percentile estimations of 0.003-0.031 and 0.011-0.059 mg/kg bw per day, respectively. Based on two scenarios on three or more ring MOAH contents in the diet and lacking toxicological information on effects of 1 and 2 ring MOAH, a possible concern for human health was raised.

9.
EFSA J ; 21(6): e08011, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284025

RESUMEN

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

10.
EFSA J ; 21(6): e08031, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37377664

RESUMEN

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.

11.
EFSA J ; 21(1): e07798, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36742462

RESUMEN

EFSA assessed the relevance of seaweed and halophyte consumption to the dietary exposure to heavy metals (arsenic, cadmium, lead and mercury) and the iodine intake in the European population. Based on sampling years 2011-2021, there were 2,093 analytical data available on cadmium, 1,988 on lead, 1,934 on total arsenic, 920 on inorganic arsenic (iAs), 1,499 on total mercury and 1,002 on iodine. A total of 697 eating occasions on halophytes, seaweeds and seaweed-related products were identified in the EFSA Comprehensive European Food Consumption Database (468 subjects, 19 European countries). From seaweed consumption, exposure estimates for cadmium in adult 'consumers only' are within the range of previous exposure estimates considering the whole diet, while for iAs and lead the exposure estimates represent between 10% and 30% of previous exposures from the whole diet for the adult population. Seaweeds were also identified as important sources of total arsenic that mainly refers, with some exceptions, to organic arsenic. As regards iodine, from seaweed consumption, mean intakes above 20 µg/kg body weight per day were identified among 'consumers only' of Kombu and Laver algae. The impact of a future increase in seaweed consumption ('per capita') on the dietary exposure to heavy metals and on iodine intake will strongly depend on the seaweeds consumed. The exposure estimates of heavy metals and iodine intakes in 'consumers only' of seaweeds were similar to those estimated in a replacement scenario with selected seaweed-based foods in the whole population. These results underline the relevance of the current consumption of seaweeds in the overall exposure to different heavy metals and in the intake of iodine. Recommendations are provided for further work needed on different areas to better understand the relationship between seaweed consumption and exposure to heavy metals and iodine intake.

12.
EFSA J ; 21(1): e07729, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36721864

RESUMEN

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.

13.
EFSA J ; 21(1): e07730, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36698492

RESUMEN

Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

14.
EFSA J ; 20(11): e07588, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36398293

RESUMEN

Genetically modified maize MON 95379 was developed to confer insect protection against certain lepidopteran species. These properties were achieved by introducing the cry1B.868 and cry1Da_7 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 95379 and its conventional counterpart needs further assessment. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Cry1B.868 and Cry1Da_7 proteins as expressed in maize MON 95379. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 95379. In the context of this application, the consumption of food and feed from maize MON 95379 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 95379 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 95379. The GMO Panel concludes that maize MON 95379 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

15.
EFSA J ; 20(11): e07619, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381120

RESUMEN

Genetically modified maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9 was developed by crossing to combine four single events: DP4114, MON 89034, MON 87411 and DAS-40278-9. The GMO Panel previously assessed the four single maize events and two of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable four-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in eight of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

16.
EFSA J ; 20(11): e07590, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36349281

RESUMEN

Genetically modified oilseed rape GT73 was developed to confer herbicide tolerance; this property was achieved by introducing the single insert containing one copy of goxv247 and the CP4 epsps expression cassettes. The scope of the application EFSA-GMO-RX-026/2 is for the modification of the terms of the authorisation regarding the placing on the market of isolated seed protein from oilseed rape GT73 for food. Considering previous opinions on this event of the GMO Panel, the molecular characterisation data do not identify issues requiring additional food safety assessment. Based on previous assessments, no biologically relevant differences were identified in the compositional, agronomic and phenotypic characteristics of oilseed rape GT73 compared with its conventional counterpart, except for the newly expressed proteins. No new agronomic, phenotypic and compositional data in support of the comparative analysis were considered necessary in the context of this application. The GMO Panel did not identify indications of safety concern regarding toxicity, allergenicity or adjuvanticity related to the presence of the newly expressed proteins CP4 EPSPS and GOXv247 in oilseed rape GT73. Therefore, the GMO Panel concludes that in the context of this application, the consumption of oilseed rape GT73 does not represent any nutritional concern and is as safe as the conventional counterpart. No post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable oilseed rape GT73 into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of oilseed rape GT73. The GMO Panel concludes that oilseed rape GT73 is as safe as its conventional counterpart with respect to potential effects on human and animal health and the environment. These conclusions also apply to the placing on the food market of isolated seed protein produced from oilseed rape GT73.

17.
EFSA J ; 20(8): e07451, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35978615

RESUMEN

Genetically modified maize MON 89034 × 1507 × MIR162 × NK603 × DAS-40278-9 was developed by crossing to combine five single events: MON 89034, 1507, MIR162, NK603 and DAS-40278-9. The GMO Panel previously assessed the five single maize events and 16 of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to the modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the five-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that five-event stack maize, as described in this application, is as safe as the non-GM comparator and non-GM maize varieties tested. In the case of accidental release of viable five-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in nine of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the five-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 89034 × 1507 × MIR162 × NK603 × DAS-40278-9. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the five-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

18.
EFSA J ; 20(7): e07411, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35898295

RESUMEN

Oilseed rape MON 94100 was developed to confer tolerance to dicamba herbicide. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between oilseed rape MON 94100 and its conventional counterpart needs further assessment, except for the levels of carbohydrates, calcium and ADF in seeds, which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) protein as expressed in oilseed rape MON 94100. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of oilseed rape MON 94100. In the context of this application, the consumption of food and feed from oilseed rape MON 94100 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that oilseed rape MON 94100 is as safe as the conventional counterpart and non-GM oilseed rape reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable oilseed rape MON 94100 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of oilseed rape MON 94100. The GMO Panel concludes that oilseed rape MON 94100 is as safe as its conventional counterpart and the tested non-GM oilseed rape reference varieties with respect to potential effects on human and animal health and the environment.

19.
EFSA J ; 20(7): e07410, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35873722

RESUMEN

Synthetic biology (SynBio) is an interdisciplinary field at the interface of molecular engineering and biology aiming to develop new biological systems and impart new functions to living cells, tissues and organisms. EFSA has been asked by the European Commission to evaluate SynBio developments in agri-food with the aim of identifying the adequacy and sufficiency of existing guidelines for risk assessment and determine if updated guidance is needed. In this context, the GMO Panel has previously adopted an Opinion evaluating the SynBio developments in agri-food/feed and the adequacy and sufficiency of existing guidelines for the molecular characterisation and environmental risk assessment of genetically modified plants (GMPs) obtained through SynBio and reaching the market in the next decade. Complementing the above, in this Opinion, the GMO Panel evaluated the adequacy and sufficiency of existing guidelines for the food and feed risk assessment of GMPs obtained through SynBio. Using selected hypothetical case studies, the GMO Panel did not identify novel potential hazards and risks that could be posed by food and feed from GMPs obtained through current and near future SynBio approaches; considers that the existing guidelines are adequate and sufficient in some Synbio applications; in other cases, existing guidelines may be just adequate and hence need updating; areas needing updating include those related to the safety assessment of new proteins and the comparative analysis. The GMO Panel recommends that future guidance documents provide indications on how to integrate the knowledge available from the SynBio design and modelling in the food and feed risk assessment and encourages due consideration to be given to food and feed safety aspects throughout the SynBio design process as a way to facilitate the risk assessment of SynBio GMPs and reduce the amount of data required.

20.
EFSA J ; 20(3): e07134, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35281656

RESUMEN

Maize DP4114 × MON 810 × MIR604 × NK603 (four-event stack maize) was produced by conventional crossing to combine four single events: DP4114, MON 810, MIR604 and NK603. The GMO Panel previously assessed the four single maize events and one of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombination were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four-event stack maize, is as safe as the comparator and the selected non-GM reference varieties. In the case of accidental release of viable grains of the four-event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in nine of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombination and the four-event stack maize. Post-market monitoring of food/feed is not considered necessary. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of the four-event stack maize. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as the non-GM comparator and the selected non-GM reference varieties with respect to potential effects on human and animal health and the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...